Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.950
Filtrar
1.
Sci Rep ; 14(1): 7694, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565889

RESUMO

The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.


Assuntos
Estudo de Associação Genômica Ampla , Proteoma , Humanos , Proteoma/genética , Estônia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Proteínas Sanguíneas/genética , Variações do Número de Cópias de DNA/genética
2.
Sci Data ; 11(1): 387, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627416

RESUMO

Comprehensive expression quantitative trait loci studies have been instrumental for understanding tissue-specific gene regulation and pinpointing functional genes for disease-associated loci in a tissue-specific manner. Compared to gene expressions, proteins more directly affect various biological processes, often dysregulated in disease, and are important drug targets. We previously performed and identified tissue-specific protein quantitative trait loci in brain, cerebrospinal fluid, and plasma. We now enhance this work by analyzing more proteins (1,300 versus 1,079) and an almost twofold increase in high quality imputed genetic variants (8.4 million versus 4.4 million) by using TOPMed reference panel. We identified 38 genomic regions associated with 43 proteins in brain, 150 regions associated with 247 proteins in cerebrospinal fluid, and 95 regions associated with 145 proteins in plasma. Compared to our previous study, this study newly identified 12 loci in brain, 30 loci in cerebrospinal fluid, and 22 loci in plasma. Our improved genomic atlas uncovers the genetic control of protein regulation across multiple tissues. These resources are accessible through the Online Neurodegenerative Trait Integrative Multi-Omics Explorer for use by the scientific community.


Assuntos
Regulação da Expressão Gênica , Proteoma , Locos de Características Quantitativas , Humanos , Encéfalo , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Proteoma/genética , Plasma , Líquido Cefalorraquidiano
3.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612408

RESUMO

Protein disulfide isomerase (PDI, EC 5.3.4.1) is a thiol-disulfide oxidoreductase that plays a crucial role in catalyzing the oxidation and rearrangement of disulfides in substrate proteins. In plants, PDI is primarily involved in regulating seed germination and development, facilitating the oxidative folding of storage proteins in the endosperm, and also contributing to the formation of pollen. However, the role of PDI in root growth has not been previously studied. This research investigated the impact of PDI gene deficiency in plants by using 16F16 [2-(2-Chloroacetyl)-2,3,4,9-tetrahydro-1-methyl-1H-pyrido[3,4-b]indole-1-carboxylic acid methyl ester], a small-molecule inhibitor of PDI, to remove functional redundancy. The results showed that the growth of Arabidopsis roots was significantly inhibited when treated with 16F16. To further investigate the effects of 16F16 treatment, we conducted expression profiling of treated roots using RNA sequencing and a Tandem Mass Tag (TMT)-based quantitative proteomics approach at both the transcriptomic and proteomic levels. Our analysis revealed 994 differentially expressed genes (DEGs) at the transcript level, which were predominantly enriched in pathways associated with "phenylpropane biosynthesis", "plant hormone signal transduction", "plant-pathogen interaction" and "starch and sucrose metabolism" pathways. Additionally, we identified 120 differentially expressed proteins (DEPs) at the protein level. These proteins were mainly enriched in pathways such as "phenylpropanoid biosynthesis", "photosynthesis", "biosynthesis of various plant secondary metabolites", and "biosynthesis of secondary metabolites" pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network for root shortening in Arabidopsis seedlings under 16F16 treatment, mainly involving phenylpropane biosynthesis and plant hormone signal transduction pathways. This study enhances our understanding of the significant role of PDIs in Arabidopsis root growth and provides insights into the regulatory mechanisms of root shortening following 16F16 treatment.


Assuntos
Arabidopsis , Indóis , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Proteoma/genética , Transcriptoma , Arabidopsis/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteômica , Ácidos Carboxílicos
4.
BMC Genomics ; 25(1): 346, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580907

RESUMO

BACKGROUND: The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION: The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION: This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.


Assuntos
Multiômica , Proteoma , Animais , Bovinos/genética , Proteoma/genética , Genoma , Transcriptoma , Anotação de Sequência Molecular
5.
mSystems ; 9(4): e0115423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530057

RESUMO

The chaperone 70 kDa heat shock protein (Hsp70) is important for cells from bacteria to humans to maintain proteostasis, and all eukaryotes and several prokaryotes encode Hsp70 paralogs. Although the mechanisms of Hsp70 function have been clearly illuminated, the function and evolution of Hsp70 paralogs is not well studied. DnaK is a highly conserved bacterial Hsp70 family. Here, we show that dnaK is present in 98.9% of bacterial genomes, and 6.4% of them possess two or more DnaK paralogs. We found that the duplication of dnaK is positively correlated with an increase in proteomic complexity (proteome size, number of domains). We identified the interactomes of the two DnaK paralogs of Myxococcus xanthus DK1622 (MxDnaKs), which revealed that they are mostly nonoverlapping, although both prefer α and ß domain proteins. Consistent with the entire M. xanthus proteome, MxDnaK substrates have both significantly more multi-domain proteins and a higher isoelectric point than that of Escherichia coli, which encodes a single DnaK homolog. MxDnaK1 is transcriptionally upregulated in response to heat shock and prefers to bind cytosolic proteins, while MxDnaK2 is downregulated by heat shock and is more associated with membrane proteins. Using domain swapping, we show that the nucleotide-binding domain and the substrate-binding ß domain are responsible for the significant differences in DnaK interactomes, and the nucleotide binding domain also determines the dimerization of MxDnaK2, but not MxDnaK1. Our work suggests that bacterial DnaK has been duplicated in order to deal with a more complex proteome, and that this allows evolution of distinct domains to deal with different subsets of target proteins.IMPORTANCEAll eukaryotic and ~40% of prokaryotic species encode multiple 70 kDa heat shock protein (Hsp70) homologs with similar but diversified functions. Here, we show that duplication of canonical Hsp70 (DnaK in prokaryotes) correlates with increasing proteomic complexity and evolution of particular regions of the protein. Using the Myxococcus xanthus DnaK duplicates as a case, we found that their substrate spectrums are mostly nonoverlapping, and are both consistent to that of Escherichia coli DnaK in structural and molecular characteristics, but show differential enrichment of membrane proteins. Domain/region swapping demonstrated that the nucleotide-binding domain and the ß substrate-binding domain (SBDß), but not the SBDα or disordered C-terminal tail region, are responsible for this functional divergence. This work provides the first direct evidence for regional evolution of DnaK paralogs.


Assuntos
Proteínas de Escherichia coli , Proteoma , Humanos , Proteoma/genética , Proteínas de Escherichia coli/genética , Proteômica , Proteínas de Choque Térmico HSP70/genética , Escherichia coli/genética , Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Nucleotídeos/metabolismo
6.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 834-846, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545981

RESUMO

The signal peptide is a key factor that affects the efficiency of protein secretion in Pichia pastoris. Currently, the most used signal peptide is the α-mating factor (MFα) pre-pro leader from Saccharomyces cerevisiae. This exogenous signal peptide has been successfully utilized to express and secret many heterologous proteins. However, MFα is not suitable for the secretory expression of all heterologous proteins. Many typical signal peptides are present in the secretory proteins of P. pastoris, which provides more options besides MFα. Therefore, it is necessary to analyze and identify more efficient endogenous signal peptides that can guide the secretion of heterologous proteins in P. pastoris. In this study, we employed bioinformatics tools such as SignalP, TMHMM, Phobius, WoLF PSORT, and NetGPI to predict endogenous signal peptides from the entire proteome of P. pastoris GS115 (ATCC 20864). Moreover, we analyzed the distribution, length, amino acid composition, and conservation of these signal peptides. Additionally, we screened 69 secreted proteins and their signal peptides, and through secretome validation, we identified 10 endogenous signal peptides that have potential to be used for exogenous protein expression. The endogenous signal peptides obtained in this study may serve as new valuable tools for the expression and secretion of heterologous proteins in P. pastoris.


Assuntos
Sinais Direcionadores de Proteínas , Proteoma , Saccharomycetales , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Proteoma/genética , Pichia/genética , Pichia/metabolismo , Saccharomyces cerevisiae , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Nat Commun ; 15(1): 2091, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453908

RESUMO

Identifying open reading frames (ORFs) being translated is not a trivial task. ProTInSeq is a technique designed to characterize proteomes by sequencing transposon insertions engineered to express a selection marker when they occur in-frame within a protein-coding gene. In the bacterium Mycoplasma pneumoniae, ProTInSeq identifies 83% of its annotated proteins, along with 5 proteins and 153 small ORF-encoded proteins (SEPs; ≤100 aa) that were not previously annotated. Moreover, ProTInSeq can be utilized for detecting translational noise, as well as for relative quantification and transmembrane topology estimation of fitness and non-essential proteins. By integrating various identification approaches, the number of initially annotated SEPs in this bacterium increases from 27 to 329, with a quarter of them predicted to possess antimicrobial potential. Herein, we describe a methodology complementary to Ribo-Seq and mass spectroscopy that can identify SEPs while providing other insights in a proteome with a flexible and cost-effective DNA ultra-deep sequencing approach.


Assuntos
Bactérias , Proteoma , Fases de Leitura Aberta/genética , Sequência de Bases , Bactérias/genética , Proteoma/genética , Análise de Sequência de DNA , DNA
8.
Biomolecules ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540773

RESUMO

Osteoarthritis (OA) is a common degenerative disease. Although some biomarkers and drug targets of OA have been discovered and employed, limitations and challenges still exist in the targeted therapy of OA. Mendelian randomization (MR) analysis has been regarded as a reliable analytic method to identify effective therapeutic targets. Thus, we aimed to identify novel therapeutic targets for OA and investigate their potential side effects based on MR analysis. In this study, two-sample MR, colocalization analysis, summary-data-based Mendelian randomization (SMR) and Mendelian randomization phenome-wide association study (MR-PheWAS) were conducted. We firstly analyzed data from 4907 plasma proteins to identify potential therapeutic targets associated with OA. In addition, blood expression quantitative trait loci (eQTLs) data sources were used to perform additional validation. A protein-protein interaction (PPI) network was also constructed to delve into the interactions among identified proteins. Then, MR-PheWASs were utilized to assess the potential side effects of core therapeutic targets. After MR analysis and FDR correction, we identified twelve proteins as potential therapeutic targets for knee OA or hip OA. Colocalization analysis and additional validation supported our findings, and PPI networks revealed the interactions among identified proteins. Finally, we identified MAPK3 (OR = 0.855, 95% CI: 0.791-0.923, p = 6.88 × 10-5) and GZMK (OR = 1.278, 95% CI: 1.131-1.444, p = 8.58 × 10-5) as the core therapeutic targets for knee OA, and ITIH1 (OR = 0.847, 95% CI: 0.784-0.915, p = 2.44 × 10-5) for hip OA. A further MR phenome-wide association study revealed the potential side effects of treatments targeting MAPK3, GZMK, and ITIH1. This comprehensive study indicates twelve plasma proteins with potential roles in knee and hip OA as therapeutic targets. This advancement holds promise for the progression of OA drug development, and paves the way for more efficacious treatments of OA.


Assuntos
Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Osteoartrite do Quadril/tratamento farmacológico , Osteoartrite do Quadril/genética , Proteoma/genética , Análise da Randomização Mendeliana , Articulação do Joelho , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/genética , Proteínas Sanguíneas , Polimorfismo de Nucleotídeo Único
9.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542234

RESUMO

Fiber diameter is an important characteristic that determines the quality and economic value of rabbit wool. This study aimed to investigate the genetic determinants of wool fiber diameter through an integration analysis using transcriptomic and proteomic datasets from hair follicles of coarse and fine wool from Angora rabbits. Using a 4D label-free technique, we identified 423 differentially expressed proteins (DEPs) in hair follicles of coarse and fine wool in Angora rabbits. Eighteen DEPs were examined using parallel reaction monitoring, which verified the reliability of our proteomic data. Functional enrichment analysis revealed that a set of biological processes and signaling pathways related to wool growth and hair diameter were strongly enriched by DEPs with fold changes greater than two, such as keratinocyte differentiation, skin development, epidermal and epithelial cell differentiation, epidermis and epithelium development, keratinization, and estrogen signaling pathway. Association analysis and protein-protein interaction network analysis further showed that the keratin (KRT) family members, including KRT77, KRT82, KRT72, KRT32, and KRT10, as well as CASP14 and CDSN, might be key factors contributing to differences in fiber diameter. Our results identified DEPs in hair follicles of coarse and fine wool and promoted understanding of the molecular mechanisms underlying wool fiber diameter variation among Angora rabbits.


Assuntos
Folículo Piloso , Transcriptoma , Animais , Coelhos , Folículo Piloso/metabolismo , Fibra de Lã , Proteoma/genética , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes , Lã/fisiologia
10.
Cell Rep Methods ; 4(3): 100729, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490205

RESUMO

Understanding the dynamic expression of proteins and other key molecules driving phenotypic remodeling in development and pathobiology has garnered widespread interest, yet the exploration of these systems at the foundational resolution of the underlying cell states has been significantly limited by technical constraints. Here, we present DESP, an algorithm designed to leverage independent estimates of cell-state proportions, such as from single-cell RNA sequencing, to resolve the relative contributions of cell states to bulk molecular measurements, most notably quantitative proteomics, recorded in parallel. We applied DESP to an in vitro model of the epithelial-to-mesenchymal transition and demonstrated its ability to accurately reconstruct cell-state signatures from bulk-level measurements of both the proteome and transcriptome, providing insights into transient regulatory mechanisms. DESP provides a generalizable computational framework for modeling the relationship between bulk and single-cell molecular measurements, enabling the study of proteomes and other molecular profiles at the cell-state level using established bulk-level workflows.


Assuntos
Proteômica , Transcriptoma , Proteoma/genética , Algoritmos , Transição Epitelial-Mesenquimal
11.
EMBO Rep ; 25(4): 1859-1885, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499810

RESUMO

Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.


Assuntos
Dinoflagelados , Dinoflagelados/genética , Dinoflagelados/metabolismo , Simbiose/genética , Filogenia , Proteoma/genética , Proteoma/metabolismo , Plastídeos/genética
12.
J Proteome Res ; 23(4): 1188-1199, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484338

RESUMO

Organisms respond to dietary and environmental challenges by altering the molecular composition of their glycerolipids and glycerophospholipids (GPLs), which may favorably adjust the physicochemical properties of lipid membranes. However, how lipidome changes affect the membrane proteome and, eventually, the physiology of specific organs is an open question. We addressed this issue in Drosophila melanogaster, which is not able to synthesize sterols and polyunsaturated fatty acids but can acquire them from food. We developed a series of semisynthetic foods to manipulate the length and unsaturation of fatty acid moieties in GPLs and singled out proteins whose abundance is specifically affected by membrane lipid unsaturation in the Drosophila eye. Unexpectedly, we identified a group of proteins that have muscle-related functions and increased their abundances under unsaturated eye lipidome conditions. In contrast, the abundance of two stress response proteins, Turandot A and Smg5, is decreased by lipid unsaturation. Our findings could guide the genetic dissection of homeostatic mechanisms that maintain visual function when the eye is exposed to environmental and dietary challenges.


Assuntos
Drosophila , Proteoma , Animais , Proteoma/genética , Drosophila melanogaster/genética , Lipidômica , Ácidos Graxos , Glicerofosfolipídeos
13.
PLoS One ; 19(3): e0299385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478538

RESUMO

The Taihe Black-Bone silky fowl chicken (BB-sfc) is a renowned dietary and medicinal chicken globally recognized for its high nutritional and medicinal value. Compared to the local Black-Bone black-feathered chicken (BB-bfc), the Taihe silky fowl chicken has higher levels of amino acids, trace elements, and unsaturated fatty acids in their muscles, which offer anti-aging, anti-cancer, and immune enhancing benefits. Despite this, the unique nutritional components, genes, and proteins in Taihe silky fowl chicken muscles are largely unknown. Therefore, we performed a comprehensive transcriptome and proteome analysis of muscle development between BB-sfc and BB-bfc chickens using RNA-Seq and TMT-based quantitative proteomics methods. RNA-Seq analysis identified 286 up-regulated genes and 190 down-regulated genes in BB-sfc chickens, with oxidoreductase activity and electron transfer activity enriched in up-regulated genes, and phospholipid homeostasis and cholesterol transporter activity enriched in down-regulated genes. Proteome analysis revealed 186 significantly increased and 287 significantly decreased proteins in Taihe BB-sfc chicken muscles, primarily affecting mitochondrial function and oxidative phosphorylation, crucial for enhancing muscle antioxidant capacity. Integrated transcriptome and proteome analysis identified 6 overlapped up-regulated genes and 8 overlapped down-regulated genes in Taihe silky fowl chicken, related to improved muscle antioxidant status. Taken together, this research provides a comprehensive database of gene expression and protein information in Taihe Black-Bone silky fowl chicken muscles, aiding in fully exploring their unique economic value in the future.


Assuntos
Galinhas , Proteoma , Animais , Galinhas/genética , Proteoma/genética , Transcriptoma , Seda/genética , Antioxidantes , Músculos , China
14.
Nat Commun ; 15(1): 2359, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504097

RESUMO

Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.


Assuntos
Hipertensão , Proteoma , Humanos , Pressão Sanguínea/genética , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Multiômica , Hipertensão/metabolismo , Rim/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo
15.
PLoS One ; 19(3): e0289699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512819

RESUMO

MicroRNAs (miRNAs) are small molecules that play an essential role in regulating gene expression by post-transcriptional gene silencing. Their study is crucial in revealing the fundamental processes underlying pathologies and, in particular, cancer. To date, most studies on miRNA regulation consider the effect of specific miRNAs on specific target mRNAs, providing wet-lab validation. However, few tools have been developed to explain the miRNA-mediated regulation at the protein level. In this paper, the MoPC computational tool is presented, that relies on the partial correlation between mRNAs and proteins conditioned on the miRNA expression to predict miRNA-target interactions in multi-omic datasets. MoPC returns the list of significant miRNA-target interactions and plot the significant correlations on the heatmap in which the miRNAs and targets are ordered by the chromosomal location. The software was applied on three TCGA/CPTAC datasets (breast, glioblastoma, and lung cancer), returning enriched results in three independent targets databases.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteoma/genética , Proteoma/metabolismo , Neoplasias/genética , Software , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
16.
Sci Rep ; 14(1): 7063, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528039

RESUMO

The ex situ population of the endangered black-footed ferret (Mustela nigripes) has been experiencing declines in reproductive success over the past 30 years of human-managed care. A potential cause may be environmental-dependent inbreeding depression with diet being one of the contributing factors since ferrets are not fed their natural diet of prairie dogs. Here, we generated and analyzed semen proteome and transcriptome data from both wild and ex situ ferrets maintained on various diets. We identified 1757 proteins across all samples, with 149 proteins unique to the semen of wild ferrets and forming a ribosomal predicted protein-protein interaction cluster. Wild ferrets also differed from ex situ ferrets in their transcriptomic profile, showing enrichment in ribosomal RNA processing and potassium ion transport. Successful fertility outcomes documented for ex situ ferrets showed the strongest association with the semen transcriptome, with enrichment in genes involved in translation initiation and focal adhesion. Fertility also synergized with the effect of diet on differentially expressed transcriptomes, mainly affecting genes enriched in mitochondrial function. Our data and functional networks are important for understanding the causes and mechanisms of declining fertility in the ex situ ferret population and can be used as a resource for future conservation efforts.


Assuntos
Furões , Sêmen , Humanos , Animais , Proteoma/genética , Transcriptoma , Fertilidade/genética
17.
Sci Rep ; 14(1): 6873, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519482

RESUMO

Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.


Assuntos
Neoplasias da Mama , Quinases Ciclina-Dependentes , Humanos , Feminino , Quinases Ciclina-Dependentes/genética , Proteoma/genética , Proteômica , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Mutação , Estrogênios , Receptores de Estrogênio/genética , Fosfoproteínas/genética
18.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547507

RESUMO

The recently isolated bacterium "Candidatus Uabimicrobium amorphum" is the only known prokaryote that can engulf other bacterial cells. Its proteome contains a high fraction of proteins involved in signal transduction systems, which is a feature normally associated with multicellularity in eukaryotes. Here, we present a protein-based phylogeny which shows that "Ca. Uabimicrobium amorphum" represents an early diverging lineage that clusters with the Saltatorellus clade within the phylum Planctomycetota. A gene flux analysis indicated a gain of 126 protein families for signal transduction functions in "Ca. Uabimicrobium amorphum", of which 66 families contained eukaryotic-like Serine/Threonine kinases with Pkinase domains. In total, we predicted 525 functional Serine/Threonine kinases in "Ca. Uabimicrobium amorphum", which represent 8% of the proteome and is the highest fraction of Serine/Threonine kinases in a bacterial proteome. The majority of Serine/Threonine kinases in this species are membrane proteins and 30% contain long, tandem arrays of WD40 or TPR domains. The pKinase domain was predicted to be located in the cytoplasm, while the WD40 and TPR domains were predicted to be located in the periplasm. Such domain combinations were also identified in the Serine/Threonine kinases of other species in the Planctomycetota, although in much lower abundances. A phylogenetic analysis of the Serine/Threonine kinases in the Planctomycetota inferred from the Pkinase domain alone provided support for lineage-specific expansions of the Serine/Threonine kinases in "Ca. Uabimicrobium amorphum". The results imply that expansions of eukaryotic-like signal transduction systems are not restricted to multicellular organisms, but have occurred in parallel in prokaryotes with predatory lifestyles and phagocytotic-like behaviors.


Assuntos
Planctomicetos , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Filogenia , Proteoma/genética , Bactérias/genética , Bactérias/metabolismo , Treonina/genética , Serina/genética
19.
Expert Rev Proteomics ; 21(1-3): 81-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38376826

RESUMO

INTRODUCTION: Breast cancer is one of the most prevalent cancers among women in the United States. Current research regarding breast milk has been focused on the composition and its role in infant growth and development. There is little information about the proteins, immune cells, and epithelial cells present in breast milk which can be indicative of the emergence of BC cells and tumors. AREAS COVERED: We summarize all breast milk studies previously done in our group using proteomics. These studies include 1D-PAGE and 2D-PAGE analysis of breast milk samples, which include within woman and across woman comparisons to identify dysregulated proteins in breast milk and the roles of these proteins in both the development of BC and its diagnosis. Our projected outlook for the use of milk for cancer detection is also discussed. EXPERT OPINION: Analyzing the samples by multiple methods allows one to interrogate a set of samples with various biochemical methods that complement each other, thus providing a more comprehensive proteome. Complementing methods like 1D-PAGE, 2D-PAGE, in-solution digestion and proteomics analysis with PTM-omics, peptidomics, degradomics, or interactomics will provide a better understanding of the dysregulated proteins, but also the modifications or interactions between these proteins.


Assuntos
Neoplasias da Mama , Leite Humano , Humanos , Feminino , Leite Humano/química , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Proteômica/métodos , Detecção Precoce de Câncer , Eletroforese em Gel Bidimensional , Proteoma/genética , Proteoma/análise
20.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421032

RESUMO

Errors in protein translation can lead to non-genetic, phenotypic mutations, including amino acid misincorporations. While phenotypic mutations can increase protein diversity, the systematic characterization of their proteome-wide frequencies and their evolutionary impact has been lacking. Here, we developed a mechanistic model of translation errors to investigate how selection acts on protein populations produced by amino acid misincorporations. We fitted the model to empirical observations of misincorporations obtained from over a hundred mass spectrometry datasets of E. coli and S. cerevisiae. We found that on average 20% to 23% of proteins synthesized in the cell are expected to harbor at least one amino acid misincorporation, and that deleterious misincorporations are less likely to occur. Combining misincorporation probabilities and the estimated fitness effects of amino acid substitutions in a population genetics framework, we found 74% of mistranslation events in E. coli and 94% in S. cerevisiae to be neutral. We further show that the set of available synonymous tRNAs is subject to evolutionary pressure, as the presence of missing tRNAs would increase codon-anticodon cross-reactivity and misincorporation error rates. Overall, we find that the translation machinery is likely optimal in E. coli and S. cerevisiae and that both local solutions at the level of codons and a global solution such as the tRNA pool can mitigate the impact of translation errors. We provide a framework to study the evolutionary impact of codon-specific translation errors and a method for their proteome-wide detection across organisms and conditions.


Assuntos
Proteoma , Saccharomyces cerevisiae , Proteoma/genética , Saccharomyces cerevisiae/genética , Biossíntese de Proteínas , Escherichia coli/genética , Aminoácidos/genética , RNA de Transferência/metabolismo , Códon/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...